Decaying Pseudoscalars from DWF LQCD

New Horizons for Lattice Computations with Chiral Fermions Brookhaven National Laboratory May 15, 2012

> Robert Mawhinney Columbia University

Generic Process	Examples	Experiment	LQCD calculates
Kl2	$K^{+} \to \mu^{+} \nu_{\mu}$ $K^{+} \to e^{+} \nu_{e}$	f_K	f_K
Kl3	$K^+ \to \pi^0 l^+ \nu_l$ $K^0 \to \pi^- l^+ \nu_l$	$ V_{us}f^+(0) ^2$	$f^+(0)$
Kl4	$K o\pi\pilar u_l$??
$K \to \pi\pi$ (CP conserving)	$K^0 \to \pi^+ \pi^-$ $K^+ \to \pi^+ \pi^0$	$ A_0 \\ A_2 $	$ A_0 A_2 $ (SM _{cpc} inputs)
Δm_K (CP conserving)	$K^0 \leftrightarrow \pi \pi \leftrightarrow \overline{K}^0$ (long distance physics) $K^0 \leftrightarrow O_{\Delta S=2} \leftrightarrow \overline{K}^0$ (short distance physics)	Δm_K	Δm_K (SM _{cpc} inputs)
$K^0 \to \pi \ \pi$ (indirect CP violation)	$K_L o \pi \pi$ $\left(K^0 \leftrightarrow \overline{K}^0\right) o \pi \pi$ independent of $\pi \pi$ isospin	$\epsilon = \frac{\hat{B}_K F_K^2 \text{SM}}{\Delta m_K}$	\hat{B}_{K}
$K^0 \to \pi \ \pi$ (direct CP violation)	$K_L ightarrow \pi \pi$ depends on $\pi \pi$ isospin	$\begin{vmatrix} \operatorname{Re}(\epsilon'/\epsilon) \\ = f(A_0, A_2, \operatorname{SM}) \end{vmatrix}$	A_0 A_2 (SM _{cpc} inputs)

SM_{cpc} = Standard Model CP-conserving parameters

RBC/UKQCD 2+1 flavor DWF ensembles

Improving Domain Wall Fermions

- When underlying gauge field changes topology, the DWF modes can extend farther in the fifth dimension
- This gives a non-perturbative contribution to residual chiral symmetry breaking
- Becomes problematic at strong coupling
- Add ratio of determinants of twisted Wilson fermions to suppress these gauge field dislocations
- Tune to minimize residual mass while still preserving toplogical ergodicity

$$\frac{\det \left[D_W(-M+i\varepsilon_f\gamma^5)^{\dagger}D_W(-M+i\varepsilon_f\gamma^5)\right]}{\det \left[D_W(-M+i\varepsilon_b\gamma^5)^{\dagger}D_W(-M+i\varepsilon_b\gamma^5)\right]} = \prod_i \frac{\lambda_i^2 + \varepsilon_f^2}{\lambda_i^2 + \varepsilon_b^2}$$

 λ_i are eigenvalues of the Hermitian Wilson operator $\gamma^5 D_W$

Force Gradient Integrator

- Proposed by Clark and Kennedy. Implemented (and simplified) in CPS by Hantao Yin
- For $16^3 \times 32 \times 16$ volumes, no speed-up compared to $O(\delta \tau^2)$ Omelyan

- For larger volumes, where δH grows with volume, force gradient may be helpful
- Tests on $48^3 \times 64 \times 16$ with 220 Mev pions using force gradient and retuning Hasenbush masses, 184 minutes/accepted configuration went down to 108 minutes/accepted configuration.

MADWF Solver

- Other chiral fermion formulations may achieve a smaller m_{res} for smaller L_s
- Mobius is one example: similar to DWF, but same m_{res} for $\sim L_s/2$
- We have many simulations at different lattice spacings to put into our global fits, so not easy to change actions. May also change topological tunneling, ...
- Idea: use Mobius fermions to accelerate the linear solver for DWF

 MADWF = Mobius Accelerated DWF
- Developed and implemented by Hantao Yin
- Gives 2× or more speed-up in quark propagator solves for current measurements.

Direct CG solve			Möbius Accelerated DWF		
operation	Op. count	time(s)	operation	Op. count	time(s)
CG solve(1e-10)	11290*32	2672	initial DWF(1e-2)	16*32	3
			DWF(1e-5)	121*32	28
			Möbius(1e-5)	4447*12	275
			DWF(1e-5)	106*32	25
			DWF(1e-5)	101*32	24
			Möbius(1e-5)	4581*12	284
			DWF(1e-5)	106*32	25
			DWF(1e-5)	102*32	24
			Möbius(1e-5)	4775*12	296
			DWF(1e-5)	106*32	25
			final DWF(1e-10)	517*32	121
total	3.61e5	2672	total	2.03e5	1138

Table 1: Comparison of MADWF CG solver with a regular (zero started) CG solver. L = 32, L' = 12, with b = 1.841556, c = 0.841556. Data obtained from a 512 node partition on BG/P, both solve to 1e-10.

Scaling at unphysical light quark mass

Compare

- DWF+I: 1/a = 2.28 GeV
- DWF+I: 1/a = 1.73 GeV (Phys. Rev. D83 (2011) 074508)

Compare

- DWF+I: 1/a = 2.28 GeV
- DWF+ID: 1/a = 1.37 GeV (RBC/UKQCD to appear)

See few percent scaling errors from $1/a = 1.73 \text{ GeV} \rightarrow \infty$, with larger O(5%) errors from 1/a = 1.37 GeV

Parameters in DWF+I and DWF+ID Global Fits

- Simultaneous fit to m_{π}^2 , m_{K}^2 , f_{π} , f_{K} , and m_{Ω}
- m_{π} , m_{K} and m_{Ω} chosen to be quantities without $O(a^{2})$ corrections
- Parameters in SU(2) chiral expansion:
 - * m_{π}^2 and f_{π} : 8 parameters 2 LO, 4 NLO, 2O(a^2)
 - * m_K^2 and f_K : 6 parameters 2 LO, 4 NLO, 2O(a^2)
 - * m_O: 1 LO, 1 NLO
 - * Total: 18 parameters
- Fits also determine
 - * 3 lattice spacings
 - * 2 ratios of light quark mass renormalization factors
 - * 2 ratios of strange quark mass renormalization factors
 - * m_s

Global Fits to Multiple Ensembles

• Fit m_{π}^2 , f_{π} , m_{K}^2 , f_{K} and m_{Ω} to an expansion in powers of a^2 and $m_{l_{\parallel}}$ including SU(2) logs where appropriate. Examples are

$$m_{ll}^2 = \chi_l \left[1 + c_B a^2 \right] + \chi_l \cdot \left\{ \frac{16}{f^2} \left((2L_8^{(2)} - L_5^{(2)}) + 2(2L_6^{(2)} - L_4^{(2)}) \right) \chi_l + \frac{1}{16\pi^2 f^2} \chi_l \log \frac{\chi_l}{\Lambda_\chi^2} \right\}$$

$$f_{ll} = f \left[1 + c_f a^2 \right] + f \cdot \left\{ \frac{8}{f^2} \left(2L_4^{(2)} + L_5^{(2)} \right) \chi_l - \frac{\chi_l}{8\pi^2 f^2} \log \frac{\chi_l}{\Lambda_\chi^2} \right\}.$$

- Note different $O(a^2)$ coefficients used for DWF+I and DWF+ID
- Fit all partially quenched data, including SU(2) ChPT finite volume corrections in fit
- Reweight data from simulation m_h to self-consistently determined m_s (Jung)
- Interpolate valence propagators to self-consistently determined m_s
- Use $m_{\pi} m_{K}$ and m_{Ω} set scale.

m_{π}^2/m_f versus m_f

- Early fits from partial DWF+ID dataset
- Data consistent with chiral logarithms

m_{π}^2/m_f versus m_f

Some physical results

DWF+I	DWF+I and DWF+ID	
$f_{\pi}^{\text{continuum}} = 124(2)(5) \text{MeV}$ $f_{K}^{\text{continuum}} = 149(2)(4) \text{MeV}$ $(f_{K}/f_{\pi})^{\text{continuum}} = 1.204(7)(25),$	$f_{\pi} = 127.1(2.7)(0.7)(2.5) \text{ MeV},$ $f_{K} = 152.4(3.0)(0.1)(1.5) \text{ MeV},$ $f_{K}/f_{\pi} = 1.1991(116)(69)(116).$	
$m_{ud}^{\overline{\rm MS}}(2{ m GeV}) = (3.59 \pm 0.21){ m MeV}$ $m_s^{\overline{\rm MS}}(2{ m GeV}) = (96.2 \pm 2.7){ m MeV}$ $\frac{m_s}{m_{ud}} = 26.8(0.8)_{ m stat}(1.1)_{ m sys}.$	$m_{u/d}(\overline{\text{MS}}, 3 \text{ GeV}) = 3.05(8)(6)(1)(4) \text{ MeV}$ $m_s(\overline{\text{MS}}, 3 \text{ GeV}) = 83.6(1.7)(0.7)(0.4)(1.0) \text{ MeV}$ $\frac{m_s}{m_{u/d}} = 27.36(39)(30)(22)(0)$	
$B_K(\overline{MS}, 3 \text{ GeV}) = 0.529(5)(15)(2)(11)$	$B_K(\overline{\text{MS}}, 3 \text{ GeV}) = 0.535(8)(7)(3)(11)$ (stat, chiral, finite V, pert. theory)	

Chiral extrapolation errors markedly reduced

Non-perturbative Renormalization

- Many of the quantities discussed in this talk require renormalization
- Needed to match to continuum schemes where low energy effective Hamiltonians are determined to N^nLO and renormalized at some scale μ
- Schrodinger functional and RI-MOM NPR schemes well understood
- RI-MOM is primarily used for kaons simplicity?
- Recent improvements in RI-MOM
 - * Non-exceptional symmetric momenta RI-SMOM
 - * Twisted b.c. to allow selection of continuous range of momenta
 - * Volume sources reduce statistical error dramatically
 - * Compute non-perturbative continuum running from fine lattices, use for coarse lattices (Rudy Arthur, Peter, Boyle, PRD 83 (2011) 114511).
 - * Implemented for $K \to \pi\pi$ (N. Garron) for RBC-UKQCD simulations on coarse lattices (1/a = 1.37 GeV).

$$\lim_{a_1 \to 0} \underbrace{\left[Z(\mu_1, a_1) Z^{-1}(\mu_0, a_1) \right]}_{\text{fine lattice}} \times \underbrace{Z(\mu_0, a_0)}_{\text{coarse lattice}} = Z(\mu_1, a_0)$$

Some $K \to \pi \pi$ physics

A neutral kaon beam will contain only long-lived K_L far enough from source. Dominant decay is $K_L \to \pi \pi \pi$, small phase space gives long lifetime. Experiments measure decay amplitudes for K_L compared to K_S (2 complex numbers).

$$\eta_{+-} = \frac{A(K_L \to \pi^+ \ \pi^-)}{A(K_S \to \pi^+ \ \pi^-)} \qquad \eta_{00} = \frac{A(K_L \to \pi^0 \ \pi^0)}{A(K_S \to \pi^0 \ \pi^0)}$$

If K_I is CP eigenstate, $\eta_{+-} = \eta_{00} = 0$.

Difference in η_{+-} and η_{00} dominantly due to difference in isospin of final state. Consider amplitudes to decay to states of definite isospin

$$A(K^0 \to \pi \pi(I)) = A_I \exp(i\delta_I)$$
 (I labels isospin, δ_I is $\pi\pi$ phase shift)

Parameters appearing in description of neutral kaon system

$$\eta_{+-} = \varepsilon + \frac{\varepsilon'}{1 + \omega e^{i\theta'}} \approx \varepsilon + \varepsilon'$$

$$\eta_{00} = \varepsilon - \frac{2\varepsilon'}{1 - \sqrt{2}\omega e^{i\theta'}} \approx \varepsilon - 2\varepsilon'$$

$$\varepsilon = \tilde{\varepsilon} + i\left(\frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)}\right)$$

$$\varepsilon' = \frac{\omega}{\sqrt{2}} e^{i\theta'}\left(\frac{\operatorname{Im}(A_2)}{\operatorname{Re}(A_2)} - \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)}\right)$$

$$\theta = \tan^{-1}\left[\frac{2\Delta M}{\Gamma_1 - \Gamma_2}\right] = 43.67 \pm 0.14^{\circ}$$

$$\theta' = \delta_2 - \delta_0 + \pi/2 = (43 \pm 6)^{\circ}$$

B_K and corrections to ϵ

$$\varepsilon = \underbrace{\frac{e^{i\pi/4}}{2 \Delta M_K} \left(\operatorname{Im}(M_{12}) + 2 \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)} \operatorname{Re}(M_{12}) \right)}_{Re(A_0)}$$

This has been focus, $O(G_F^2)$ contribution from $O^{\Delta S = 2}$ operator

$$B_K(\mu) \equiv \frac{\langle \bar{K}^0 | (\bar{s}d)_{V-A} (\bar{s}d)_{V-A} | K^0 \rangle}{\frac{8}{3} f_K^2 m_K^2}$$

Long distance physics hep-ph/0201071 (page 58, Nierste) Buras, Guadagnoli (PRD 78 (2008) 033005 Buras, Guadagnoli, Isidori (PLB 688 (2010) 309

$$M_{12} = \frac{1}{2m_K} \langle K^0 | H^{|\Delta S|=2} | \overline{K}^0 \rangle - \text{Disp} \frac{i}{4m_K} \int d^4 x \, \langle K^0 | H^{|\Delta S|=1}(x) \, H^{|\Delta S|=1}(0) | \overline{K}^0 \rangle$$

$$\Gamma_{12} = \text{Abs} \frac{i}{2m_K} \int d^4 x \, \langle K^0 | H^{|\Delta S|=1}(x) \, H^{|\Delta S|=1}(0) | \overline{K}^0 \rangle$$

$$= \frac{1}{2m_K} \sum_f (2\pi)^4 \delta^4(p_K - p_f) \langle K^0 | H^{|\Delta S|=1} | f \rangle \, \langle f | H^{|\Delta S|=1} | \overline{K}^0 \rangle \simeq \frac{1}{2m_K} A_0^* \, \overline{A}_0$$

- Norman Christ: measure these by extending Lellouch-Lüscher finite volume methods
- Jianglei Yu: numerical investigation of signal and renormalization for connected graphs

$$B_{\scriptscriptstyle K}$$

$$\varepsilon = \frac{e^{i\pi/4}}{\sqrt{2} \Delta M_K} \left(\operatorname{Im}(M_{12}) + 2 \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)} \operatorname{Re}(M_{12}) \right) = \kappa_{\varepsilon} \frac{e^{i\phi_{\varepsilon}}}{\sqrt{2}} \left[\frac{\operatorname{Im}(M_{12}^{O^{\Delta s = 2}})}{\Delta m_K} \right]$$

$$C_{\varepsilon} = \frac{G_F^2 F_K^2 m_K M_W^2}{6\sqrt{2} \pi^2 \Delta M_K}$$

Overall $|V_{cb}|^4$

 0.94 ± 0.02 Buras, Guadagnoli, Isidori

$$\eta_3^{NLO} \equiv \eta_{ct}^{NLO} \equiv 0.457 \pm 0.073$$
 $\eta_3^{NNLO} \equiv \eta_{ct}^{NNLO} \equiv 0.496 \pm 0.047$

Brod and Gorbahn, PRD 82 094026 (2010) 3% overall change in ε

$K \rightarrow \pi \pi$ Decays via Penguins

Penguin operators

$$Q_{3,5} = (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V\mp A}$$

$$Q_{4,6} = (\bar{s}_{\alpha}d_{\beta})_{\scriptscriptstyle V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{\scriptscriptstyle V\mp A}$$

$$Q7,9 = \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{q=u,d,s} e_q (\bar{q}_{\beta} q_{\beta})_{V\pm A}$$

$$Q8,10 = \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\alpha})_{V\pm A}$$

Direct calculations of $K \rightarrow \pi \pi \Delta I = 3/2$ amplitudes

• RBC-UKQCD DWF+ID (Iwasaki + DSDR gauge action) ensemble

$$\mathcal{W}(M; \epsilon_f; \epsilon_b) = \frac{\det \left[D_{\mathcal{W}}(-M + i\epsilon_b \gamma^5)^{\dagger} D_{\mathcal{W}}(-M + i\epsilon_b \gamma^5) \right]}{\det \left[D_{\mathcal{W}}(-M + i\epsilon_f \gamma^5)^{\dagger} D_{\mathcal{W}}(-M + i\epsilon_f \gamma^5) \right]} = \prod_i \frac{\lambda_i^2 + \epsilon_f^2}{\lambda_i^2 + \epsilon_b^2}$$

- $m_{\pi}^{\text{dyn}} = 170 \text{ MeV}, 32^3 \times 64 \times 16 \text{ lattice volume}, (4.60 \text{ fm})^3 \text{ physical volume}, 1/a = 1.37(2) \text{ GeV } (a = 0.146(2) \text{ fm}), m_{\text{res}}^{\overline{MS}} (\mu = 2 \text{ GeV}) = 3.7 \text{ MeV}$
- $m_{\pi}^{PQ} = 142(2) \text{ MeV}, m_K = 508(9) \text{ MeV}, \vec{p}_{\pi} = 199(4) \text{ MeV}$
- Physical decays have $m_{\pi} = 140 \text{ MeV}$, $m_{K} = 500 \text{ MeV}$, $\vec{p}_{\pi} = 200 \text{ MeV}$

Single wall source for π 's on given lattice Multiple kaon locations, since inexpensive Results from 62 configurations

M. Lightman and E. Goode, Lattice 2010 M. Lightman, Columbia PhD thesis, 2011 E. Goode, talk Lattice 2011

Results for $K \rightarrow \pi \pi \Delta I = 3/2$ amplitudes

• Simulations also done on quenched lattices, at many kinematic points, which help to estimate errors from extrapolations to physical kinematics on unquenched lattices

	ReA_2	$Im A_2$
lattice artefacts	15%	15%
finite-volume corrections	6.2%	6.8%
partial quenching	3.5%	1.7%
renormalization	1.7%	4.7%
unphysical kinematics	3.0%	0.22%
derivative of the phase shift	0.32%	0.32%
Wilson coefficients	7.1%	8.1%
Total	18%	19%

Extrapolation of $Re(A_2)$ to physical kinematics

Error estimates (M. Lightman thesis)

- N. Garron and A. Lytle have NPR results now, using 4 RI-SMOM schemes.
- Reweighting to physical light dynamical mass

$$Re(A_2) = 1.397(81) \times 10^{-8} GeV \xrightarrow{reweighting} 1.46(15) \times 10^{-8} GeV$$

$$Im(A_2) = -5.65(31) \times 10^{-13} GeV \xrightarrow{reweighting} -5.79(39) \times 10^{-13} GeV$$

Results for $K \rightarrow \pi \pi \Delta I = 3/2$ amplitudes

- 63 configurations analyzed, in ongoing calculation.
- PRL 108 (2012) 141601

Re
$$A_2 = (1.436 \pm 0.062_{\text{stat}} \pm 0.258_{\text{syst}}) 10^{-8} \text{ GeV}$$

Im $A_2 = -(6.83 \pm 0.51_{\text{stat}} \pm 1.30_{\text{syst}}) 10^{-13} \text{ GeV}$.

$$\frac{\text{Im} A_2}{\text{Re} A_2} = -4.76(37)_{\text{stat}} (81)_{\text{syst}} \times 10^{-5}$$

 $Re(A_2) = 1.484 \times 10^{-8} \text{ GeV (experiment)}$

Some observations and opinions

- With DWF (or Mobius) plus BGQ, 2+1 flavor simulations with $m_{\pi} = 140$ MeV are underway
 - * $48^{3} \times 96 \times 32$ DWF+I with 1/a = 1.74 GeV gives $(5.5 \text{ fm})^{3}$ box 70 time units/BGQ-rack-month -> 500 time units/BGQ-rack-month
 - * $64^{3} \times 128 \times 16$ DWF+I with 1/a = 2.28 GeV gives $(5.5 \text{ fm})^{3}$ box 2x to 4x harder than 1/a = 1.74 GeV
 - * Many hundreds of configurations with a few BGQ rack-years
 - * Ideal for many physics measurements
- No chiral extrapolations!
 - * Still interesting in their own right, for better determination of LEC's
 - * Might need even lighter pions to know more about convergence of ChPT
 - * Not an issue for real-world QCD physics
- Adding DSDR term gives viable action for finite temperature studies
- We have reached the point where 2+1 flavor QCD with full continuum symmetries, physical pions, physical kaons and large volumes can be done!

Shutdown of QCDOC, Sept. 18, 2011

BGQ at BNL

- BNL currently has 3+ racks of preproduction BGQ hardware
 - * 1 rack is owned by BNL
 - * 2 complete racks are owned by the RIKEN-BNL Research Center (RBRC)
 - * A fourth partially populated RBRC rack will be used to hold a few small BGQ partitions for code development and testing.

Strong Scaling of BAGEL DWF CG Inverter on 64⁴ volume

Tests were performed with the STFC funded DiRAC facility at Edinburgh

Weak Scaling for BAGEL DWF CG Inverter

Tests were performed with the STFC funded DiRAC facility at Edinburgh